
Earth Science 11: Earth Materials

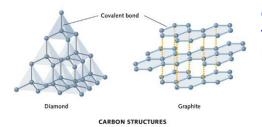
Name: ______

Earth Science 11: Earth Materials: Minerals

Textbook: Chapter 1

1.1: Matter and Atoms

- Everything with mass and volume is called **MATTER**, which is made up of **ELEMENTS**.
- Elements are made up of particles called **ATOMS**.


This sample shows a "rough," or uncut, diamond in its rock matrix

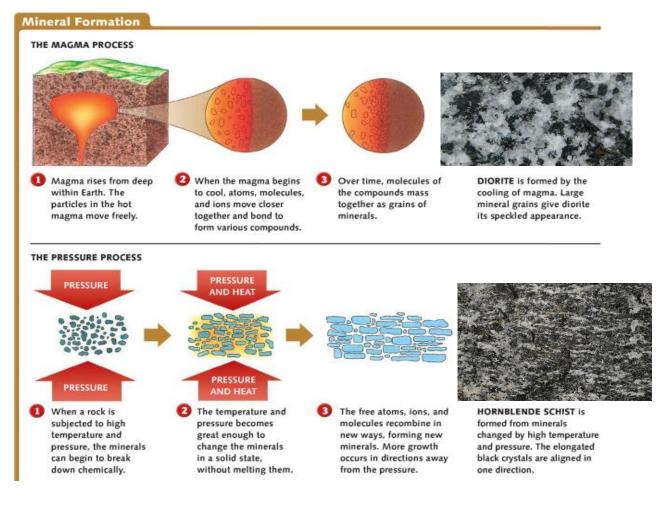
A diamond is made up of uniformly arranged carbon atoms.

Nucleus A carbon atom is made up of a nucleus surrounded by an electron cloud. The nucleus, in which most of the atom's mass is concentrated, consists of protons and neutrons. Electron

• the internal arrangement of atoms in a substance as this determines its properties.

GRAPHITE AND DIAMONDS ARE MADE UP OF CARBON, BUT THE BONDS BETWEEN THE CARBON ATOMS AER DIFFERENT – DETERMINES HOW HARD EACH MINERAL IS

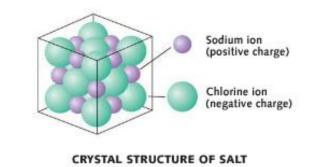
What is a Mineral?


Minerals have the following characteristics:

- **1. NATURALLY OCCURING**
- 2. **SOLID**
- **3. DEFINITE CHEMICAL COMPOSITION**
- 4. INORGANIC (WAS NEVER ALIVE)
- 5. ATOMS ARRANGED IN AN ORDERLY PATTERN

Mexico's Cueva de los Cristale

How do Minerals Form?


1.4: Properties of Minerals

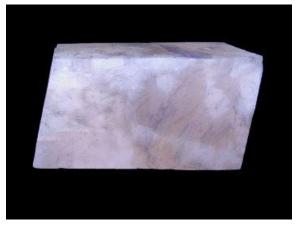
Use workbook activities 1.1 - 1.5 (pg. 2 - 8) to investigate the properties used in mineral identification.

Structure of Minerals: Crystal Faces

• A crystal is a geometric solid with smooth surfaces called crystal faces.

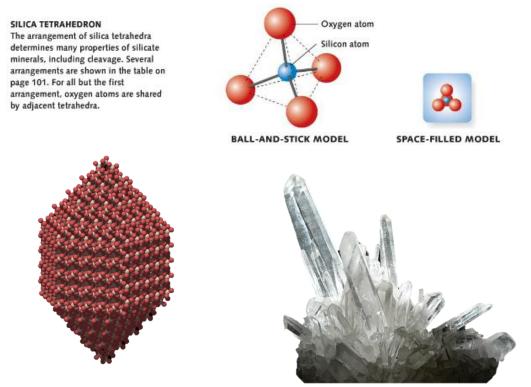
- Ionic bonding between Na+ and Cl- ions results in a repeating pattern of each sodium ion being surrounded by six chlorine ions and each chlorine ion being surrounded by six sodium ions.
 Produces a cubic crystal (all Sodium Chloride crystals will have this shape!).
- Each mineral crystal has a unique shape that can be used to identify it.

Structure of Minerals: Mineral Cleavage


• Cleavage: TENDENCY TO SPLIT ALONG PLANES OF WEAK BONDING Are crystal faces always present? NO, ONLY IF THERE IS ENOUGH ROOM FOR THE CRYSTAL TO GROW WHEN FORMING

Halite (NaCl): Cubic cleavage

*Complete Activity 1.6 (pg. 10 – 11) in your workbook


Calcite (CaCO₃): Rhombohedral cleavage.

Number of Cleavages and Their Directions	Name and Description of How the Mineral Breaks	Shape of Broken Pieces (cleavage directions are numbered)	Illustration of Cleavage Directions
No cleavage (fractures only)	No parallel broken surfaces; may have conchoidal fracture (like glass)	Quartz	None (no cleavage)
1 cleavage	Basal (book) cleavage "Books" that split apart along flat sheets	Muscovite, biotite, chlorite (micas)	
2 cleavages intersect at or near 90°	Prismatic cleavage Elongated forms that fracture along short <i>rectangular</i> cross sections	Orthoclase 90° (K-spar) 1 Plagioclase 86° & 94°, pyroxene (augite) 87° & 93°	
2 cleavages do not intersect at 90°	Prismatic cleavage Elongated forms that fracture along short <i>parallelogram</i> cross sections	Amphibole (hornblende) 56° & 124°	
3 cleavages intersect at 90°	Cubic cleavage Shapes made of cubes and parts of cubes	3 1 2 Halite, galena	
3 cleavages do not intersect at 90°	Rhombohedral cleavage Shapes made of rhombohedrons and parts of rhombohedrons	Calcite and dolomite 75° & 105°	
4 main cleavages intersect at 71° and 109° to form octahedrons, which split along hexagon- shaped surfaces; may have secondary cleavages at 60° and 120°	Octahedral cleavage Shapes made of octahedrons and parts of octahedrons	4 3 Fluorite	
6 cleavages intersect at 60° and 120° Dodecahedral cleavage Shapes made of dodecahedrons and parts of dodecahedrons		Sphalerite	

1.5 Mineral Groups

- Minerals composed of OXYGEN and SILICA are called silicates.
 - More than 90 % of Earth's crust are silicates
- Silica tetrahedrons are the **BASIC BUILDING BLOCKS** of silicates.

• Arrangement of silica tetrahedrons in a silicate determines many minerals characteristics such as melting point, cleavage, hardness and density.

	Mineral/Formula	Cleavage	Silicate Structure	Example
	Olivine group (Mg, Fe) ₂ SiO ₄	None	Independent tetrahedron	Olivine
	Pyroxene group (Augite) (Mg,Fe)SiO ₃	Two planes at right angles	Single chains	Augite
с	Amphibole group (Hornblende) :a ₂ (Fe,Mg) ₅ Si ₈ O ₂₂ (OH) ₂	Two planes at 60° and 120°	Double chains	Hornblend
Micas	Biotite K(Mg,Fe) ₃ AlSi ₃ O ₁₀ (OH) ₂	One plane	Sheets	Biotite
	Muscovite KAl ₂ (AISi ₃ O ₁₀)(OH) ₂			Muscovite
Feldspars	Potassium feldspar (Orthoclase) KAISi ₃ O ₈	Two planes at 90°	Three-dimensional networks	Potassium
	Plagioclase feldspar (Ca,Na)AISi ₃ O ₈		000000	
	Quartz SiO ₂	None		Quartz

*Complete Mineral ID Lab (Activity 1.9 pg.13)