NAME:
DATE:
BLOCK:
(Refer to pp.290-299 of BC Science 8)

- Pressuse is the amount of force applied over a given area on an object.
- When pressure is applied to matter, Compression can result.
- Compression is a decrease in volume produced by a force.

GASES ARE COMPRESSIBLE

- A gas caneasily be compressed because there is a large amount of space between its particles.
- Gas that is trapped in a container and heated will increase in pressure.
- Heat causes the particles to move faster. These fast moving particles bounce off the sides of the container.
- The increased pressure could cause the container to explode. - Gas that is trapped in a container and cooled will decrease in pressure.
- The decreased pressure could cause the container to implode

LIQUIDS AND SOLIDS ARE VERY DIFFICULT TO COMPRESS

- The particles of liquids and solids are already so tightly packed together that squeezing them together is almost impossible.
- Solids and liquids are described as incompressible

When force is applied to the bottle, the gas particles move closer together. The gas is compressed into a smaller volume

Abottle filled with liquid

When force is applied to the bottle, the liquid does not compress. There is no room for the liquid particles to move closer together

COMPRESSION AND DEFORMATION

- Solids can appear to be compressed if the "air pockets" in the material are compressed.
- An example would be squishing (compressing) a marshmallow.
- Solids can also appear to be compressed when they are deformed.
- Deformation means to change shape without being forced into a smaller volume.

The player's face and the ball are temporarily compressed and deformed.

Since the clown's weight is spread out over many nails, the pressure at each nail is small.
Assignment:
SUMMARY:
$1.5 C Q+$ summary

COMPARING PRESSURE

- Pressure depends on both the amount of \qquad force area the force acts upon.
- Formula for pressure:

$$
\operatorname{pressure}(P)=\frac{\operatorname{force}(F)}{\operatorname{area}(A)} \frac{\mathrm{N}}{\mathrm{~m}^{2}}
$$

- 1 newton (N) of force for every square metre of area $\left(m^{2}\right)$ is called a

$$
\text { pascal }{ }^{\left(\mathrm{P}_{0}\right)}
$$

- 1000 Pa $=1 \mathrm{kPa}$

CALCULATING PRESSURE
Use the formula to calculate the pressure involved in the following questions. Show your work!!!!

$$
A=1 \times \omega
$$

1. An 880 N person stands on a 0.80 m by 1.2 m board. (920 Pa)

$$
+p .299+5,6
$$

$$
\begin{aligned}
& \text { 2. A } 52000 \mathrm{~N} \text { car rests on a } 3.0 \mathrm{~m} \text { by } 6.0 \mathrm{~m} \text { platform. } \\
& P \text { : } \\
& F=S 2000 \mathrm{~N} \\
& A=3 m \times 6 m=18 \mathrm{~m}^{2} \\
& \begin{aligned}
P=\frac{F}{A}=\frac{52000 \mathrm{~N}}{18 \mathrm{~m}^{2}}=2888.9 \mathrm{P}_{\mathrm{a}} & =2900 \mathrm{~Pa}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& P \text { : } \\
& F=880 \mathrm{~N} \\
& A=0.80 \mathrm{~m} \times 1.2 \mathrm{~m}=0.96 \mathrm{~m}^{2} \\
& P=F=\frac{880 \mathrm{~N}}{0.96 \mathrm{~m}^{2}}=916.7 \mathrm{~Pa}
\end{aligned}
$$

