4.2 PROPERTIES OF VISIBLE LIGHT

Name: Date: Block:

(Refer to BC Science 8 pp. 144 - 151)

WAVE MODEL OF LIGHT

- The Wave model of light is a model of light behavior that represents light travelling as a wave.
- In this model, ight is a type of wave that travels through empty space and transfers energy from one location to another, such as from the Sun to the Earth.
 - visible light is electromagnetic radiation (light energy) you can see.

wavelengths 750 nm

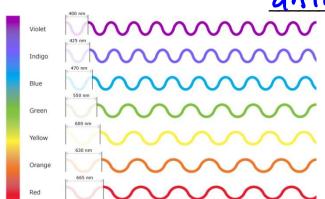
REFRACTION OF LIGHT

refraction: the bending or Changing direction of a wave as it passes from one material to another

This occurs due to a change in the wave's _Specon

Waves travel at different speeds in different mediums

- Light waves retract when they pass from one material to another.
 - For example, when a light wave passes from _air__ into water


speed of light 4300 000 km/s

A light wave also refracts when it passes through a

White light, such as sunlight is made up of waves having different <u>Wavelengths</u> and <u>frequencies</u>.

When a light wave passes through a prism the different wavelengths are refracted by amounts

Longer wavelengths are refracted ______than shorter wavelengths.

> This causes different colours to be <u>Separated</u> when they come out of the prism.

COLOURS OF THE RAINBOW

- water droplets also refract light.
- When white light is separated into its different colours, this band
 of colour is called the visible <u>Spectrum</u>.
 - The range of <u>frequencies</u> of visible light.
- The seven most visible colours of the spectrum are:

Red, Orange, Yellow, Green, Blue, Indigo, Violet

ROY6 BIV

- The colour <u>red</u> has the longest wavelength and lowest frequency.
- The colour <u>violet</u> has the shortest wavelength and highest frequency.

PRODUCING THE VISIBLE SPECTRUM

- In the 17th century, Sir Isaac Newton did an experiment to prove that light contains <u>Colosis</u>.
- He used a prism to <u>Separate</u> white light into a spectrum of colours and a reverse prism to
 Tecomoine the colours into white light again.

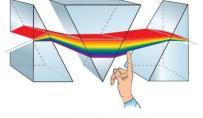



Figure 4.15 If one colour is removed from the spectrum, the recombined light is no longer white.

- He showed that colour was a property of visible light.
 - He proposed that white light, such as sunlight, is the result
 of <u>Mixin 4</u> together all the different colours of light.

COLOUR AND REFLECTION

Reflection: When a light wave strikes a
 Surface and bounces off.

When white light strikes an object, some colours are
retlected and some are absorbed.
 Only the <u>reflected</u> colours can be seen.
 For example, yellow cloth reflects <u>yellow</u>
and absorbs all the other colours.
(red, orange, green, blue, indigo,
 Only three colours of light are needed to produce all the colours of
the rainbow: <u>red</u> , <u>blue</u> , and <u>green</u> .
· They are called the three <u>additive</u>
wimary colours because adding
all three together in proper amounts will make white
light.
red light white light blue light Figure 4.17(A) Combining the additive primary colours produces white light. green light
yellow
The light of two additive primary colours will produce a Secondary Colour. The three secondary colours are yellow, and magnita.